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Background:
Lung nodule diagnosis
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Related work:
Feature-based self-explanatory models
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Method
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Previous methods cRedAnno 🤏🤏



Results:
Predicting nodule attributes and malignancy
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Nodule attributes
Malignancy #nodules Additional information

Sub Cal Sph Mar Lob Spi Tex

Full annotation

HSCNN[1] 71.90 90.80 55.20 72.50 - - 83.40 84.20 4252 3D volume data

X-Caps[2] 90.39 - 85.44 84.14 70.69 75.23 93.10 86.39 1149 None

MSN-JCN[3] 70.77 94.07 68.63 78.88 94.75 93.75 89.00 87.07 2616 segmentation mask + diameter + OTSU + SLIC

MTMR[4] - - - - - - - 93.50 1422 all 2D slices in 3D volumes

cRedAnno (50-NN) 94.93 92.72 95.58 93.76 91.29 92.72 94.67 87.52

730cRedAnno* (250-NN) 96.36 92.59 96.23 94.15 90.90 92.33 92.72 88.95

cRedAnno* (trained) 95.84 95.97 97.40 96.49 94.15 94.41 97.01 88.30

Partial annotation

WeakSup[5] (1:5) 43.10 63.90 42.40 58.50 40.60 38.70 51.20 82.40
2558

multi-scale 3D volume data, 
all malignancy annotations, 

1/(1+N) attribute annotationsWeakSup[5] (1:3) 66.80 91.50 66.40 79.60 74.30 81.40 82.20 89.10

cRedAnno (10%, 50-NN) 94.93 92.07 96.75 94.28 92.59 91.16 94.15 87.13

730cRedAnno* (10%, 150-NN) 95.32 89.47 97.01 93.89 91.81 90.51 92.85 88.17 None

cRedAnno* (1%, trained)🤏🤏 91.81 93.37 96.49 90.77 89.73 92.33 93.76 86.09

[1] S. Shen et al., “An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification,” Expert Systems with Applications, vol. 128, pp. 84–95, Aug. 2019.
[2] R. LaLonde et al., “Encoding Visual Attributes in Capsules for Explainable Medical Diagnoses,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, Cham, 2020, pp. 294–304.
[3] W. Chen et al., “End-to-End Multi-Task Learning for Lung Nodule Segmentation and Diagnosis,” in 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 2021, pp. 6710–6717.
[4] L. Liu et al., “Multi-Task Deep Model With Margin Ranking Loss for Lung Nodule Analysis,” IEEE Trans. Med. Imaging, vol. 39, no. 3, pp. 718–728, Mar. 2020.
[5] A. Joshi et al., “Lung nodule malignancy classification with weakly supervised explanation generation,” J. Med. Imag., vol. 8, no. 04, Aug. 2021.

#nodules 0 1 sum
train 276 242 518
val 108 104 212

sum 384 346 730



Results:
Predicting nodule attributes and malignancy
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Full annotation Partial annotation

Simultaneously high accuracy in predicting malignancy and all nodule attributes.



Results:
Predicting nodule attributes

• cRedAnno shows a significantly 
larger probability of 
simultaneously predicting all 8 
nodule attributes correctly. 

• Approximately 90% nodules 
have at least 7 attributes 
correctly predicted.
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Results:
Analysis of extracted features in learned space
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Results:
Ablation study
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Validation of components Annotation reduction

Arch #params Training strategy ImageNet
pretrain Acc

ResNet-50 23.5M

end-to-end × 86.74*

two-stage × 70.48

two-stage √ 70.48

ViT 21.7M

end-to-end × 64.24

two-stage × 79.19

two-stage √ 88.30

Accuracy of malignancy prediction (%). All annotations are used 
during training.

* Representative setting and performance of previous works using CNN architecture



Conclusion

• A data-/annotation-efficient self-
explanatory approach for lung nodule 
diagnosis

• Comparing with SOTA: 
• 1% annotation, fewer samples
• comparable in malignancy prediction
• significantly better in predicting all nodule 

attributes as explanations

• Visualising the learned space:
• extracted features are highly separable
• clustering coincides with clinical 

knowledge

• Open-source code

• Implementation
• Sample selection
• Pre-processing
• Experiments
• Plots
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github.com/diku-dk/credanno
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