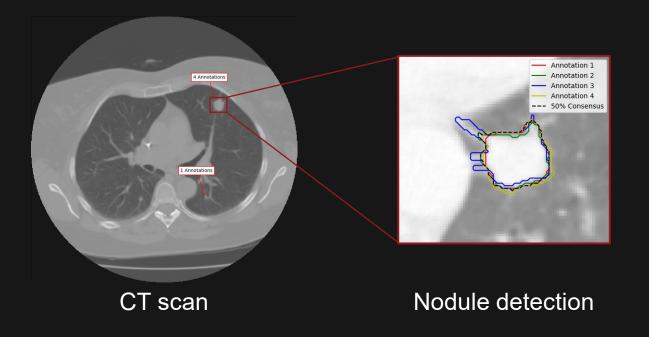
cRedAnno+: Annotation Exploitation in Self-Explanatory Lung Nodule Diagnosis (令十)

J. Lu^{1,2}, C. Yin^{1,3}, K. Erleben¹, M. B. Nielsen², S. Darkner¹

¹ Department of Computer Science, University of Copenhagen, Denmark
 ² Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, Denmark
 ³ Department of Computer Science, Hong Kong Baptist University, China

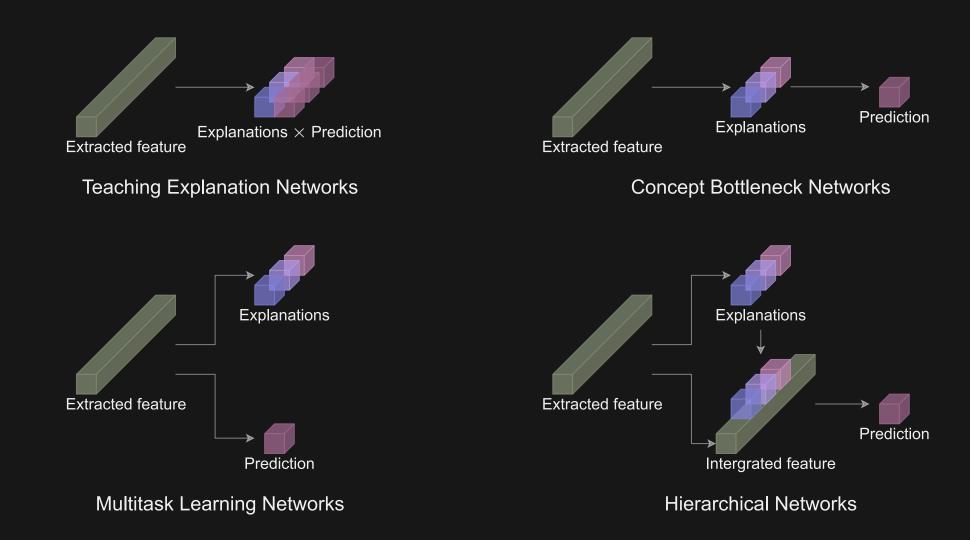
KØBENHAVNS UNIVERSITET

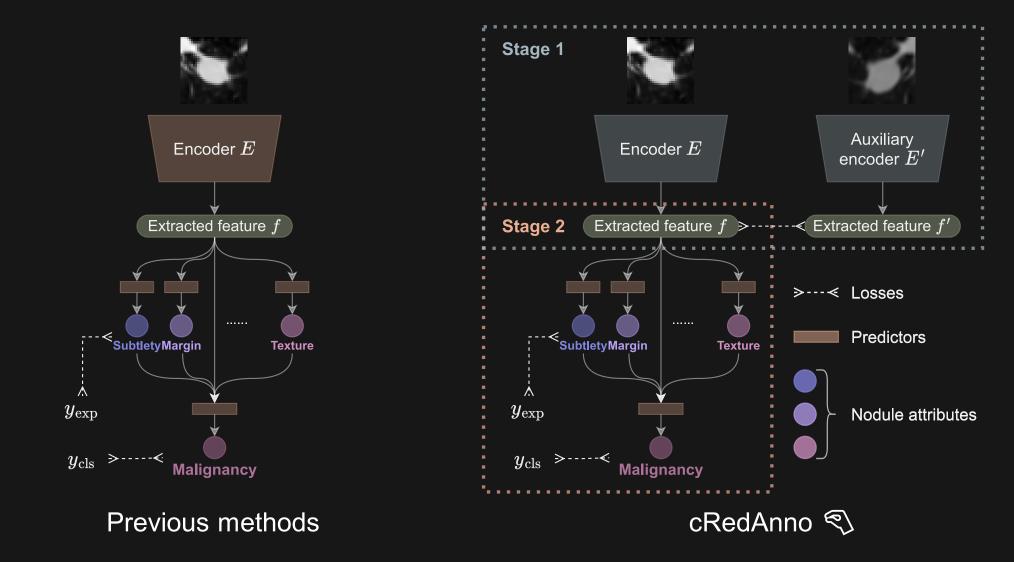
(considerably) **Red**ucing **Anno**tation Need in Self-Explanatory Models for Lung Nodule Diagnosis (cRedAnno �)


J. Lu^{1,2}, C. Yin^{1,3}, O. Krause¹, K. Erleben¹, M. B. Nielsen², S. Darkner¹

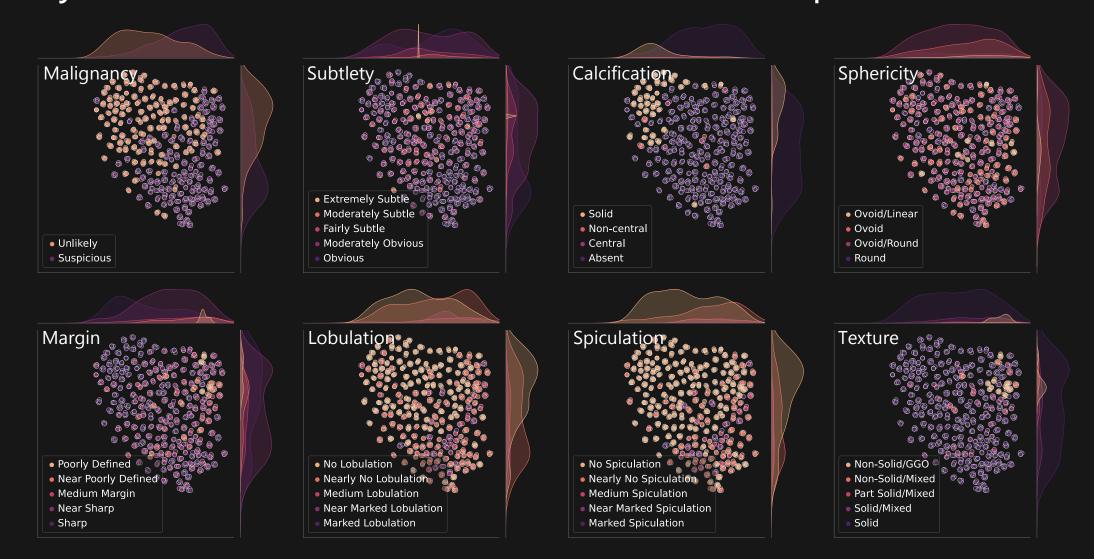
¹ Department of Computer Science, University of Copenhagen, Denmark
 ² Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, Denmark
 ³ Department of Computer Science, Hong Kong Baptist University, China

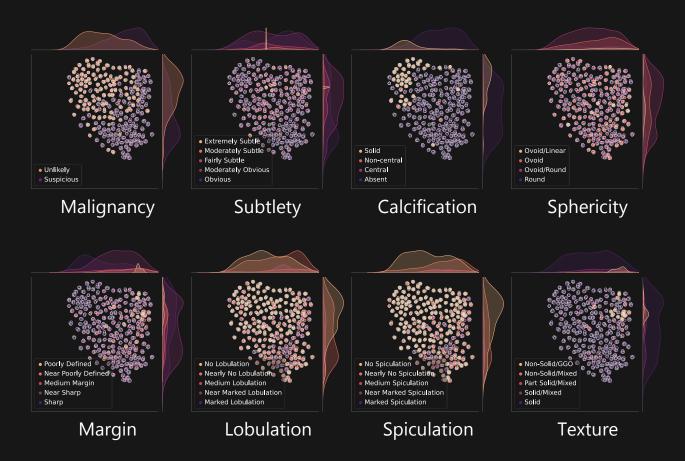
KØBENHAVNS UNIVERSITET


Background: Lung nodule diagnosis


Nodule attributes	Subtlety	Obvious
	InternalStructure	Soft Tissue
	Calcification	Non-central
	Sphericity	Ovoid
	Margin	Sharp
	Lobulation	Nearly No Lobulation
	Spiculation	Medium Spiculation
	Texture	Solid
	Malignancy	Moderately Suspicious

Annotation info


Related work: Feature-based self-explanatory models

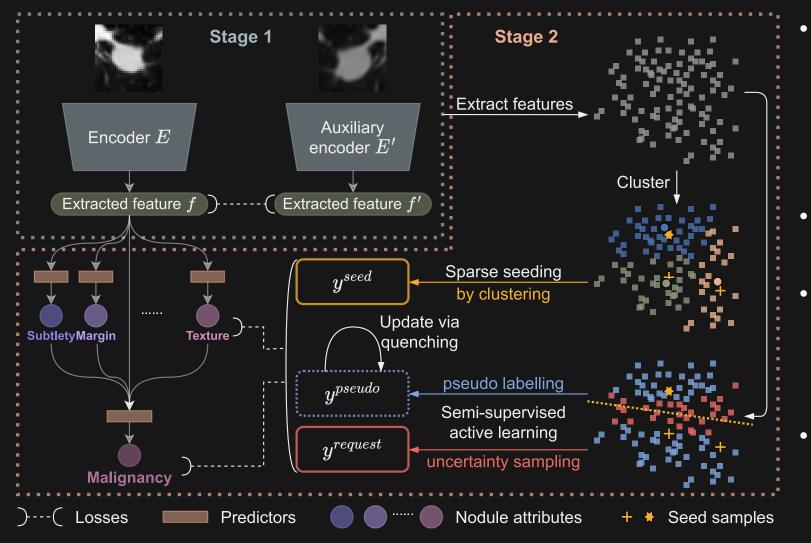

Method – cRedAnno 🖘: Self-supervised contrastive learning

Results: Analysis of extracted features in the learned space

Limitations of cRedAnno 🔊

- Under scarce annotation conditions
 - Unstable performance
- Randomly selected annotations are not necessarily informative enough
 - Risk of not covering enough label space
- Unlabelled data are not adequately used

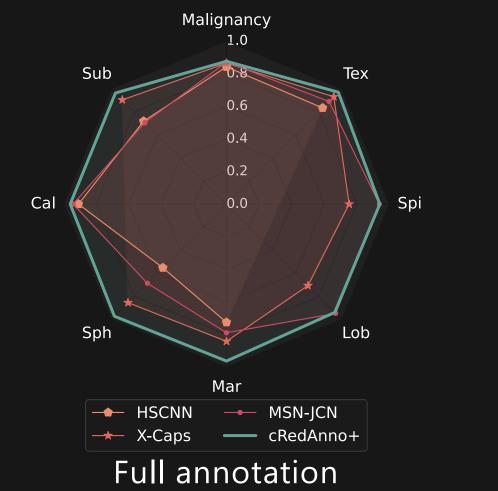
cRedAnno+: Annotation Exploitation in Self-Explanatory Lung Nodule Diagnosis (令十)

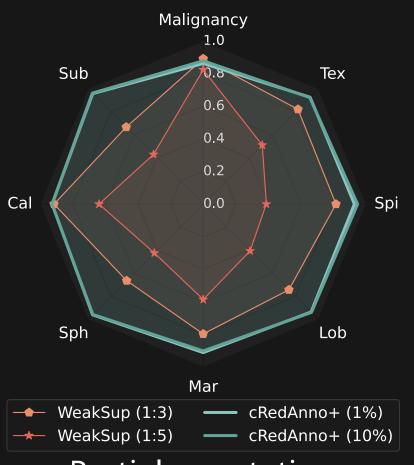

J. Lu^{1,2}, C. Yin^{1,3}, K. Erleben¹, M. B. Nielsen², S. Darkner¹

¹ Department of Computer Science, University of Copenhagen, Denmark
 ² Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, Denmark
 ³ Department of Computer Science, Hong Kong Baptist University, China

KØBENHAVNS UNIVERSITET

Method – cRedAnno+ 🔊 🕂 : Annotation exploitation mechanism

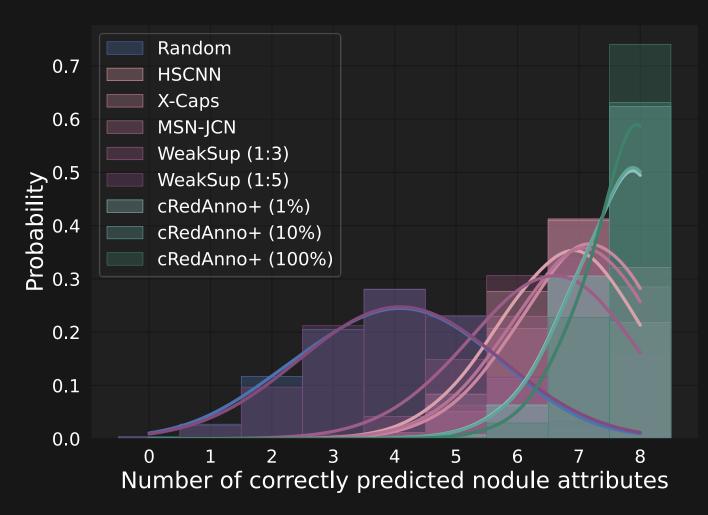

- Aim: jointly utilise
 - extracted features
 - annotations
 - unlabelled data
- Sparse seeding.
 - cluster centroids
- Semi-supervised active learning.
 - uncertainty sampling
 - pseudo labelling
 - Quenching.
 - update pseudo labels
 - reinitialise the weights


Results: Predicting nodule attributes and malignancy

_	Nodule attributes						Malignancy	#nodules	Additional information	
	Sub	Cal	Sph	Mar	Lob	Spi	Тех		#nodules	
Full annotation										
HSCNN ^[1]	71.90	90.80	55.20	72.50			83.40	84.20	4252	3D volume data
X-Caps ^[2]	90.39		85.44	84.14	70.69	75.23	93.10	86.39	1149	None
MSN-JCN ^[3]	70.77	94.07	68.63	78.88	94.75	93.75	89.00	87.07	2616	segmentation mask + ···
MTMR ^[4]								93.50	1422	all 2D slices in 3D volumes
� +	96.32 ±0.61	95.88 ±0.15	97.23 ±0.20	96.23 ±0.23	93.93 ±0.87	94.06 ±0.60	97.01 ±0.26	87.56 ±0.61	730	None
Partial annotation										
WeakSup ^[5] (1:5)	43.10	63.90	42.40	58.50	40.60	38.70	51.20	82.40		multi-scale 3D volume data,
WeakSup ^[5] (1:3)	66.80	91.50	66.40	79.60	74.30	81.40	82.20	89.10		all malignancy annotations, 1/(1+N) on attributes
S (10%)	96.06 ±2.02	93.76 ±0.85	95.97 ±0.69	94.37 ±0.79	93.06 ±0.27	93.15 ±0.33	95.49 ±0.85	86.65 ±1.39		
N + (10%)	96.23 ±0.45	92.72 ±1.66	95.71 ±0.47	90.03 ±3.68	93.89 ±1.41	93.67 ±0.64	92.41 ±1.05	87.86 ±1.99	730	None
₹) (1%)	93.98 ±2.09	89.68 ±3.52	94.02 ±2.30	91.94 ±1.17	91.03 ±1.72	90.81 ±1.56	93.63 ±0.47	80.02 ±8.56		None
N + (1%)	95.84 ±0.34	92.67 ±1.24	95.97 ±0.45	91.03 ±4.65	93.54 ±0.87	92.72 ±1.19	92.67 ±1.50	86.22 ±2.51		

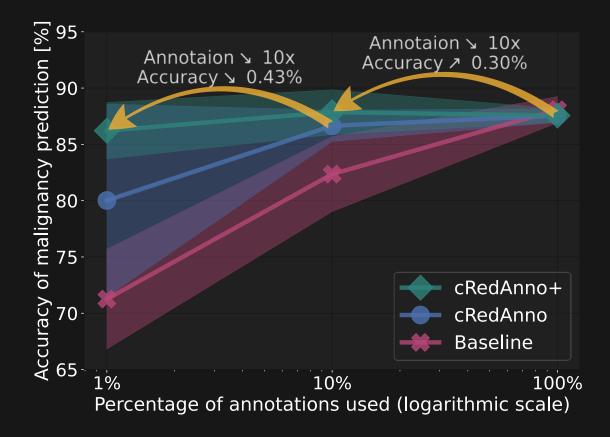
[1] S. Shen *et al.*, "An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification," *Expert Systems with Applications*, vol. 128, pp. 84–95, Aug. 2019.
[2] R. LaLonde *et al.*, "Encoding Visual Attributes in Capsules for Explainable Medical Diagnoses," in *Medical Image Computing and Computer Assisted Intervention – MICCAI 2020*, Cham, 2020, pp. 294–304.
[3] W. Chen *et al.*, "End-to-End Multi-Task Learning for Lung Nodule Segmentation and Diagnosis," in *2020 25th International Conference on Pattern Recognition (ICPR)*, Milan, Italy, 2021, pp. 6710–6717.
[4] L. Liu *et al.*, "Multi-Task Deep Model With Margin Ranking Loss for Lung Nodule Analysis," *IEEE Trans. Med. Imaging*, vol. 39, no. 3, pp. 718–728, Mar. 2020.
[5] A. Joshi et al., "Lung nodule malignancy classification with weakly supervised explanation generation," *J. Med. Imag.*, vol. 8, no. 04, Aug. 2021.

Results: Predicting nodule attributes and malignancy



Partial annotation

Simultaneously high accuracy in predicting malignancy and all nodule attributes.


Results: Predicting nodule attributes for a given sample

- cRedAnno+ shows a significantly larger probability of simultaneously predicting all 8 nodule attributes correctly.
- >90% nodules have at least 7 attributes correctly predicted, even under the extreme 1% annotation condition.

Results

Comparison with cRedAnno 🖘

Ablation study

Seed	Annotation	Pseudo labelling	Quench ing	Malignancy accuracy			
sample selection	acquisition strategy			(10%)	(1%)*		
random	×	×	×	86.65 ±1.39	80.02 ±8.56		
random	malignancy confidence	dynamic	V	82.71 ±7.47	79.50 ±11.10		
sparse	integrated entropy	dynamic	V	86.52 ±0.99	86.22 ±2.51		
sparse	malignancy confidence	static	×	85.91 ±1.66	85.35 ±1.93		
sparse	malignancy confidence	dynamic	V	87.86 ±1.99	86.22 ±2.51		

* Does not contain requested annotations.

Conclusion

- A data-/annotation-efficient selfexplanatory approach for lung nodule diagnosis
 - Contrastive learning (🖘)
 - learn semantically meaningful reasoning space
 - Annotation exploitation mechanism ($\P +$)
 - jointly utilise the extracted features, annotations, and unlabelled data
- Comparing with SOTA:
 - 1% annotation, fewer samples
 - competitive in malignancy prediction
 - significantly better in predicting all nodule attributes as explanations

• Open-source code

github.com/diku-dk/credanno

- Implementation
- Sample selection
- Pre-processing
- Experiments
- Plots

Considerably **Red**ucing **Anno**tation Need in Self-Explanatory Models for Lung Nodule Diagnosis (cRedAnno 𝔄) and (cRedAnno+ 𝔄 +)

