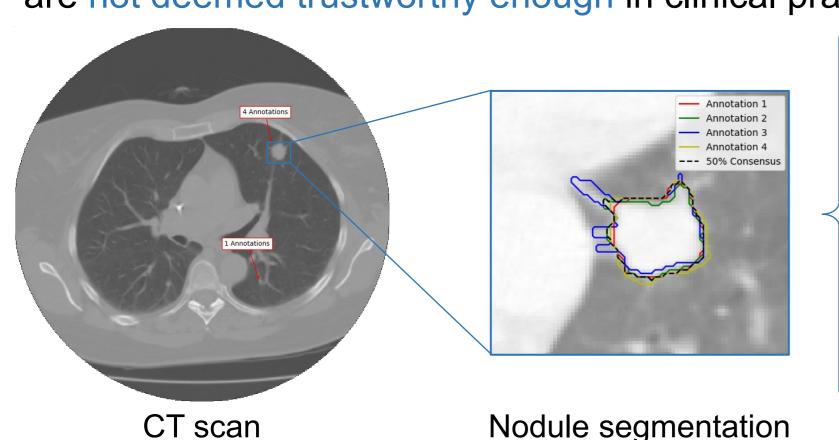


BACKGROUND

Effective lung cancer screening requires accurate characterisation of lung nodules in CT images. Post-hoc explainable approaches that attempt to interpret "black boxes" are not deemed trustworthy enough in clinical practice.



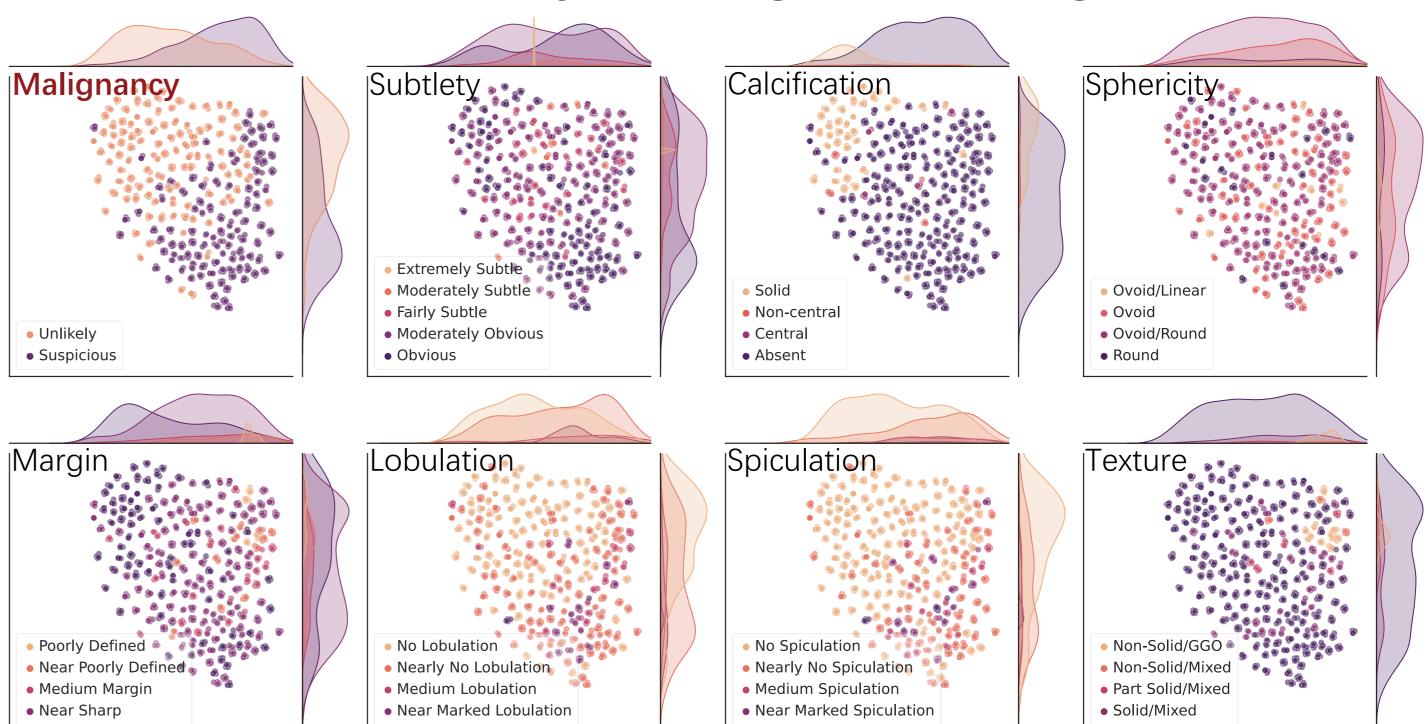
	Malignancy	Moderately Suspicious
Nodule attributes	Texture	Solid
	Spiculation	Medium Spiculation
	Lobulation	Nearly No Lobulation
	Margin	Sharp
	Sphericity	Ovoid
	Calcification	Non-central
	InternalStructure	Soft Tissue
	Subtlety	Obvious

Annotation info

Self-explanatory methods

- Trained to use a set of human-understandable clinical concepts to explain and derive their decisions
- The additional annotation needs still limit the applicability of this approach

The learned semantically meaningful reasoning space



- Reasonable separability in both malignancy and nodule attributes
- Intuitive correlation between nodule attributes and malignancy

Self-explanatory lung nodule diagnosis can de more trustworth even with 99% annotation reduced

cRedAnno+: Annotation Exploitation in Self-Explanatory Lung Nodule Diagnosis

J. Lu^{1,2}, C. Yin^{1,3}, K. Erleben¹, M. B. Nielsen², S. Darkner¹ ⊠ lu@di.ku.dk

- ¹ Department of Computer Science, University of Copenhagen, Denmark
- ² Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, Denmark
- ³ Department of Computer Science, Hong Kong Baptist University, China

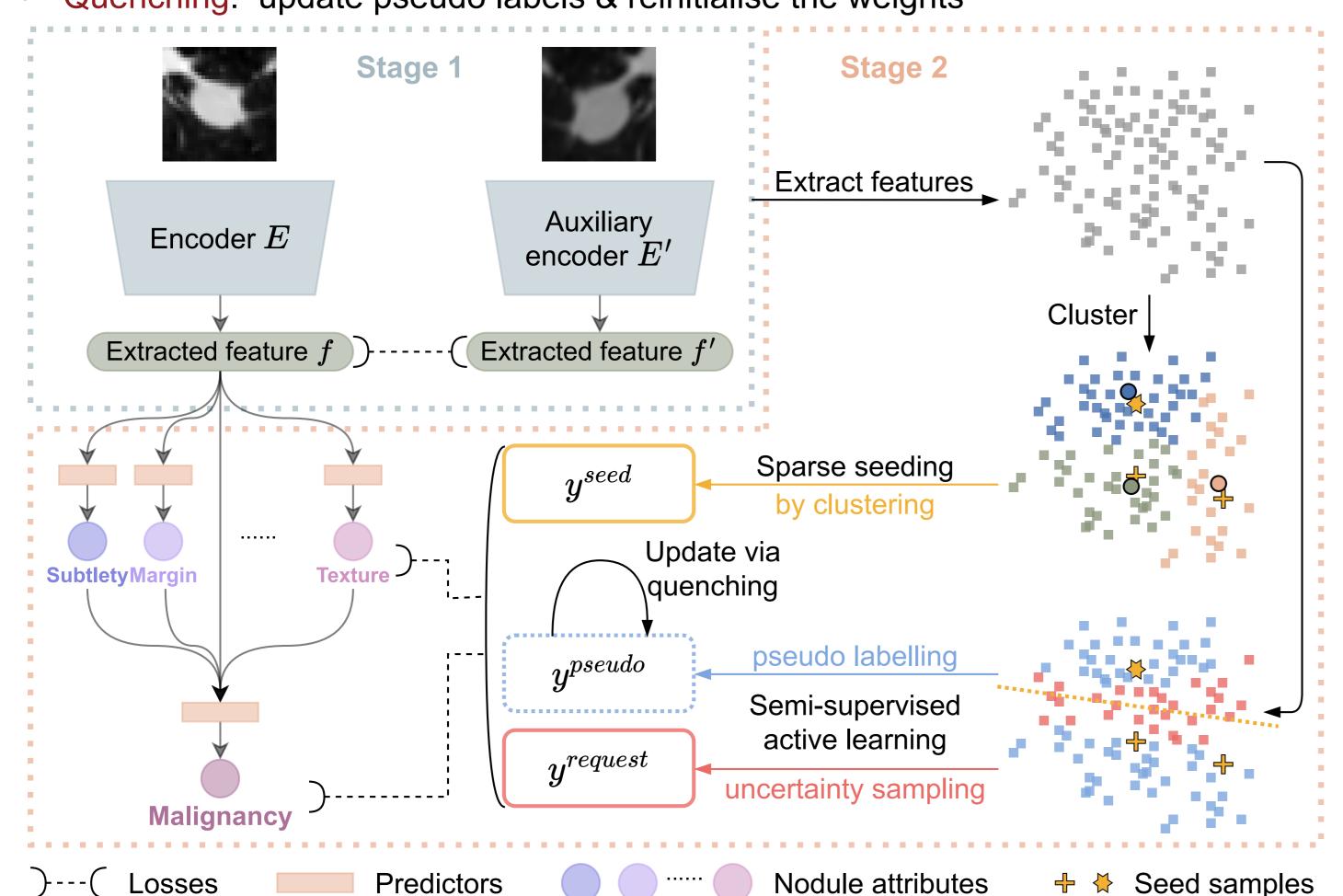
github.com/diku-dk/credanno

METHOD

Aim: to jointly utilise the extracted features, annotations, and unlabelled data

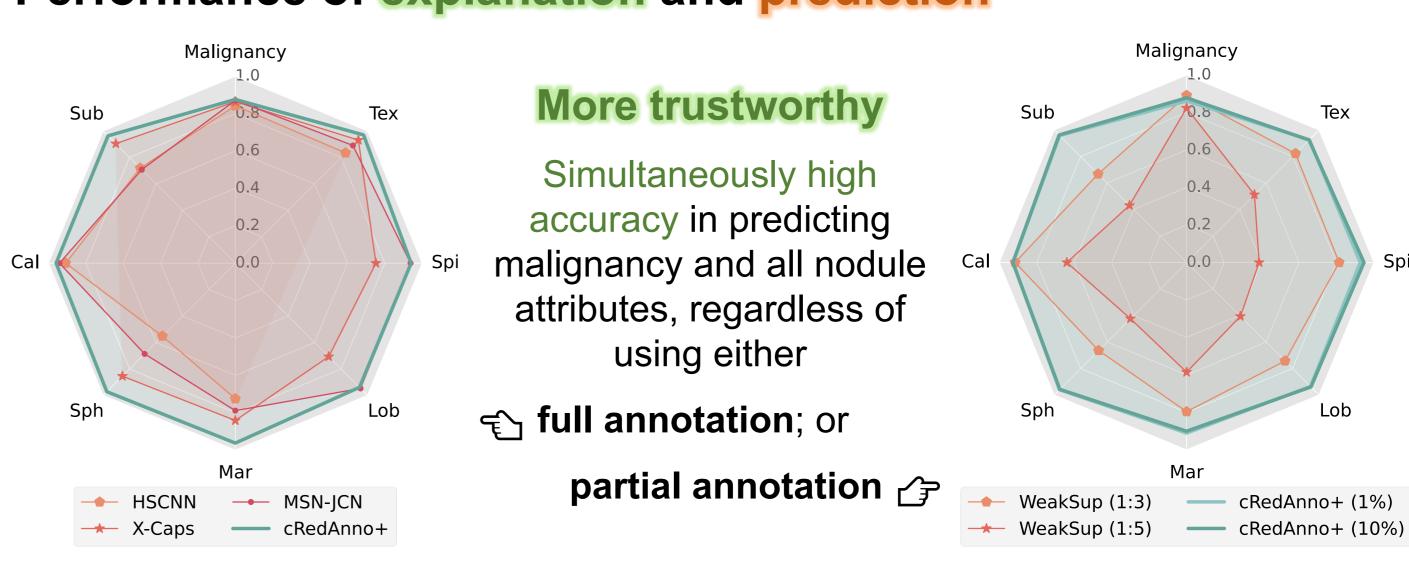
Annotation exploitation mechanism:

- Sparse seeding: cluster centroids
- Semi-supervised active learning: uncertainty sampling & pseudo labelling
- Quenching: update pseudo labels & reinitialise the weights

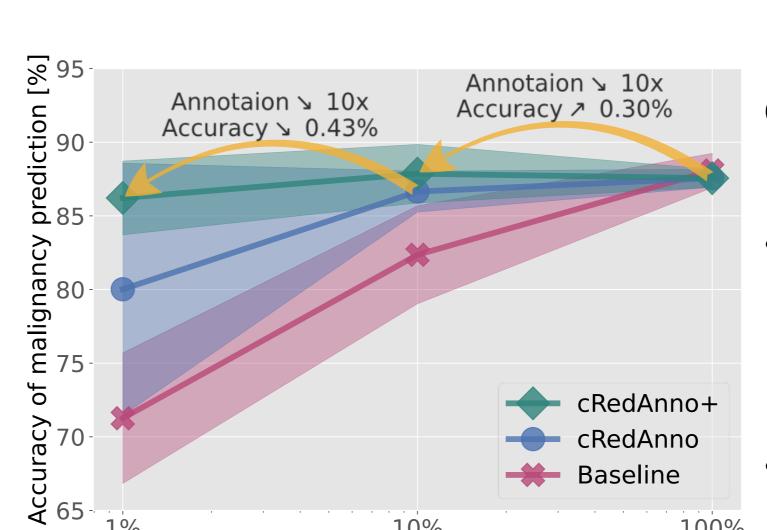


RESULTS

Performance of explanation and prediction



100%



10%

Percentage of annotations used (logarithmic scale)

Compared with our previous method:

More annotation-efficient

Comparable or even higher accuracy of malignancy prediction with 10x fewer annotation

More robust

Better robustness under the condition of 1% annotation.